Blue Carbon Losses With Salt Marsh Drainage

Gail Chmura¹, Lee vanArdenne¹, Jan Wollenberg¹, Thomas Mozdzer², Asim Biswas³

¹McGill University, ²Bryn Mawr College, ³University of Guelph

gail.Chmura@mcgill.ca https://chmuralab.weebly.com/

Emission factors produced for land use change

Intergovernmental Panel on Climate Change

Good Practice Guidance for Land Use, Land-Use Change and Forestry

Edited by Jim Penman, Michael Gytarsky, Taka Hiraishi, Thelma Krug, Dina Kruger, Riitta Pipatti, Leandro Buendia, Kyoko Miwa, Todd Ngara, Kiyoto Tanabe and Fabian Wagner

<u>iges</u>

IPCC National Greenhouse Gas Inventories Programme

One chapter was on wetlands.

www.IPCC.ch –

see publications/methodologies

2006 revised 1996 **IPCC Guidelines** for National **Greenhouse Gas** Inventories then the **2013 Supplement** on Wetlands

<text><text><text><text><text>

Task Force on National Greenhouse Gas Inventories

Chapters 1 Introduction Chapter 2 Drained Inland Organic Soils Chapter 3 Rewetted Organic Soils Chapter 4 Coastal Wetlands Chapter 5 Inland Wetland Mineral Soils Chapter 6 Constructed Wetlands for Wastewater Treatment Chapter 7 Cross-cutting Issues and Reporting

Source of IPCC emission factors for drainage

C loss assumed to extend to 1 m.

Emissions persist for as long as it takes soil OC (organic matter) to be oxidized (that is until loss is equivalent to stocks reported in earlier tables).

TABLE 4.13 ANNUAL EMISSION FACTORS (EF _{DR}) ASSOCIATED DRAINAGE (EF _{DR}) ON AGGREGATED ORGANIC AND MINERAL SOILS (TONNES C HA ⁻¹ YR ⁻¹)				
Ecosystem	EF _{DR}	95% CI	Range	Ν
Tidal marshes and mangroves	7.9 ¹	5.2, 11.8	1.2 - 43.9	22
¹ Camporese et al. (2008), Deverel & Leighton (2010), Hatala et al. (2012), Howe et al. (2009), Rojstaczer & Deverel (1993)				
² 95%CI of the geometric mean				

Data from 3 sites:

- Camporese et al. a drained cropped peatland south of Venice, Italy (was a *Phragmites* site)
- Deverel & Leighton, Hatala et al., Rojstaczer & Deverel -Sacramento-San Joaquin Delta, California, USA, freshwater tidal
- Howe et al. Hunter Estuary, Australia (mangroves and salt marsh)

Climate of these sites

Compare IPCC sources to climate of other sites where drainage has been prevalent & in some cases continues to occur

Winter Temperatures °C

Methods –

Decomposition bag study in marsh and farm Aboveground on soil surface Belowground material at 15 cm soil depth

Results -

- Decomposition bag study in marsh and farm
- Shows considerable carbon can be lost in the first year Discount role of temperature:
- a 3-6% increase in decay rate per °C (Kirwan et al. 2014) Farm soil was ~1 °C higher = 6% increase in decay

We assume wherever drainage has occurred, a **minimum** of **37.6%** blue carbon lost in the 1st yr .

Methods-Compare stocks in marshes to drained sites

Cored to basal marine clay in farm and marsh, controlling for compaction, measuring bulk density and OC by LOI.

Mean ±sd

Results –

Despite the surface C enrichment due to agriculture... The deposit above the marine clay in the undrained marshes is thicker & stores 265 - 642 tonne C ha⁻¹ farm soil deposit stores 47 - 461 tonne C ha⁻¹

Average Rate of loss 4.91 tonnes C ha⁻¹ yr⁻¹ IPCC average 7.9 tonnes C ha⁻¹ yr⁻¹

As much as 39% of the original C stock has been lost.

Farms may still be loosing C and we can regain carbon by restoring them – but we have to convince the agriculture comunity.

Thanks!

Abandoned dvke

Acknowledgements

Kamouraska farmers for access, particularly Dr. Parent Many McGill undergrad students Commission for Environmental Cooperation Natural Sciences and Engineering Research Council of Canada

0.0 Ě

48°0'0"N

A

50 km

Filling the gaps: Return of ecosystem services

Recent History of Lusby Marsh 1935 1959 1979

Filling the gaps: Return of ecosystem services

